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11.0  What We Need to Know When We Finish This Chapter

If the population relationship includes two explanatory variables, but our 
sample regression contains only one, our estimate of the effect of the included 
variable is almost surely biased. The best remedy is to include the omitted 
variable in the sample regression. Minimizing the sum of squared errors 
from a regression with two explanatory variables yields two slopes, each of 
which represents the relationship between the parts of the dependent vari-
able and the associated explanatory variable that are not related to the other 
explanatory variable. These slopes are unbiased estimators of the population  
coefficients. Here are the essentials.
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1.	 Equation (11.1), section 11.2: If there are two explanatory variables 
that affect yi, the population relationship is

y x xi i i i= + + +α β β ε1 1 2 2 .

2.	 Equations (11.6), (11.10), and (11.11), section 11.2: If the popula-
tion relationship is equation (11.1), but we still run the regression of 
equation (4.4), the slope of that regression is a biased estimator of the 
true effect of x1i on yi, β1:
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	 This bias is usually referred to as specification error, omitted-variable 
bias, or left-out-variable error (LOVE). The regression of equa-
tion (4.4) mistakenly attributes some of β2, the effect of the omitted 
variable x2i, to the included variable, x1i. The extent of this mistaken 
attribution is determined by the extent to which x2i looks like x1i.

3.	 Section 11.2: If the omitted variable is not available but a suitable 
instrument, zi, is, LOVE can be fixed. The instrumental variables (IV) 
strategy is often referred to as addressing unobserved heterogeneity. If 
an instrument is not available, it may be possible to sign the bias and 
determine whether b is an over- or underestimate of β1.

4.	 Equations (11.12), (11.19), (11.24), and (11.27), section 11.3: If 
we minimize the sum of squared errors for the multivariate sample 
relationship,

y a b x b x ei i i i= + + +1 1 2 2 ,

	 we get errors that have an average value of zero and are unrelated, at 
least linearly, to either of the two explanatory variables.

5.	 Equation (11.65), section 11.4: Regression estimates the effect of x1i 
on yi as equivalent to
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	 the effect of the part of x1i that is not related to x2i on the part of yi that 
is not related to x2i. This is why we can interpret a regression slope as 
measuring the effect of an explanatory variable ceteris paribus, hold-
ing constant all other explanatory variables. Analogously, regression 
estimates the effect of x2i on yi as equivalent to the effect of the part of 
x2i that is not related to x1i on the part of yi that is not related to x1i.

6.	 Equation (11.85), section 11.5, and exercises 11.16 and 11.17: The 
slope and intercept estimators from the regression of equation (11.12) 
are unbiased estimators of the coefficients and constant in the popula-
tion relationship of equation (11.1): E(b 1) = β1, E(b 2) = β2, and 
E(a) = α.

11.1  Introduction

In this chapter, we add a second explanatory variable. In one sense, this brings 
us back, finally, to the beginning of the book. Ever since chapter 1, we’ve been 
building the foundation that we need to understand the interpretations that we 
presented there. As we said in that chapter, this task would be on the verge of 
completion when we got here.

In another sense, this chapter is also a natural conclusion to the discussion 
that we began in chapter 8. Chapter 5 specifies our basic population relation-
ship in equations (5.1), (5.5), (5.6), and (5.11) and the assertion at the end of 
section 5.3 “that nothing can be predicted about any of the disturbances from 
any of the values for the explanatory variable.” It then demonstrates why we 
want to estimate this population relationship with the sample regression in 
equation (4.4).

Chapters 8 through 10 ask how we should modify this sample regression 
if each of our successive assumptions about the population relationship was 
incorrect. Chapter 8 addresses equations (5.5) and (5.6), chapter 9 addresses 
equation (5.11), and chapter 10 addresses the possibility that COV(xi, εi) ≠ 0.

This chapter completes this sequence by, again, returning to the begin-
ning. The three chapters that precede it have all maintained our very first 
assumption. This is expressed in equation (5.1), which asserts that a single 
explanatory variable causes yi. The question of why we may want as many 
explanatory variables as we used in chapter 1, and how we would interpret 
their effects, is the same as the question of why we don’t want the sample 
regression of equation (4.4) if equation (5.1) isn’t correct.

At the same time, this chapter fully reflects the maturity and sophisti-
cation that we have gained from studying the 10 chapters that preceded it. 
Derivations that we used to present in great detail will often be abbreviated 
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